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Abstract. Knowledge acquisition is the most important challenge in

building an expert system in any field, and one of the sources of knowl-
edge will be the data collected in that field. Traditionally, the data col-

lection process is assumed to have a symmetric cost. For example, this

assumption will not be acceptable in the medical due to various expenses.
Designing a cost-sensitive classification and a cost-sensitive feature selec-

tion method are two approaches to considering cost factors. Cost-effective

feature selection improves financial return by significantly saving feature
data cost as well as limiting credit losses and this can be used in differ-

ent areas, for example, computer imaging and medical diagnosis which

also have a large number of features that may be irrelevant or redundant.
Analysis of the research reviewed in this study shows that cost-sensitive

feature selection focuses on selecting a feature subset with minimum total
cost while achieving a classification accuracy that is as high as possible.

The review of selected studies showed a downward trend in using heuris-

tic methods in this field, Wrapper methods are in the first rank regarding
usage in evaluation criteria, and 76% of selected studies are in the single-

objective category. Most of the studies were classified in the single-label

category based on the number of determined labels.

Keywords: Cost-based approaches, Cost-sensitive classification, Feature

selection, Single-label data.
2020 MSC : 68T20.

1. Introduction

The main challenge in building expert systems is acquiring knowledge. One
source of knowledge could be data collected on the same problem. Today, many
experts have focused on the problems of acquiring knowledge from data using
machine learning methods (Ciupke, 2006). The input data cardinality, i.e., the
number of independent features, dramatically affects the model built from the
data by machine learning methods. Studies have shown that with the existence
of irrelevant and redundant features in the original data, the obtained model
is overfitted and negatively affects the model (Beiranvand & Chahooki, 2016;

� dowlatshahi.mb@lu.ac.ir, ORCID: 0000-0002-4862-0626
https://doi.org/10.22103/jmmr.2025.24028.1696 © the Author(s)
Publisher: Shahid Bahonar University of Kerman

How to cite: S. Beiranvand, M.B. Dowlatshahi, A. Hashemi, A review on cost-based feature
selection algorithms in the various applications of machine learning, J. Mahani Math. Res.

2027; 16(1): 1-44.

1

https://orcid.org/0000-0002-3468-2981
https://orcid.org/0000-0002-4862-0626
mailto:dowlatshahi.mb@lu.ac.ir
https://orcid.org/0000-0002-3768-0615
https://doi.org/10.22103/jmmr.2025.24028.1696


2 S. Beiranvand, M.B. Dowlatshahi, A. Hashemi

Beiranvand & Zare Chahooki, 2023). Therefore, the collected data must be
preprocessed before being used for learning. Preprocessing includes various
methods, one of the best approaches is to choose a practical group of features.
The general performance of machine learning methods can be enhanced by
using just an optimal group of high-dimensional features (Ali, Khan, et al.,
2020).

In general, feature selection algorithms have four main steps, as shown in
Figure 1. The most important of the four phases involves subset creation and
subset evaluation. The candidate feature subsets are generated in the feature
generation step. A search method is used to measure the quality of candidate
feature subsets using an evaluation function in the subset evaluation phase.
According to the impact of the subset evaluation phase, it is expected that
more practical subsets of features generated in the subset generation phase
(Nguyen et al., 2020).

Figure 1. Four main steps in a feature selection algorithm.

Datasets can have redundant and irrelevant features that adversely affect
the machine learning methods. Features that contribute to the machine learn-
ing methods should be detected using feature selection techniques. Irrelevant
features provide no useful information to the machine learning process, and re-
dundant features provide duplicate information (Büyükkeçeci & Okur, 2022).

Selecting a small set of informative features from many possibly noisy can-
didates is a challenging problem with many applications in machine learning
and approximate Bayesian computation. In practice, the cost of computing
informative features also needs to be considered (Raynal et al., 2023). Most
feature selection techniques assume the data are already stored in data sets and
available without incurring any cost. However, data are not free in real-world
applications(Sheng et al., 2006). Traditionally, the symmetric cost of data col-
lection is an important assumption when building learning models. In some
applications like medical diagnoses, this assumption is invalid in cases where
the cost of obtaining information is asymmetric; For example, the difference
in the cost of various medical examinations. Costs can also be calculated in
economics and the availability of certain medical tests, the risk of infection,



A review on cost-based feature selection algorithms in... – JMMR Vol. 16, No. 1 (2027) 3

and the computational cost of obtaining information. Therefore, the concept
of cost can be considered a new aspect of evaluating a model’s usefulness (Ali,
Khan, et al., 2020).

The selection of the correct examination variables for diagnosing heart dis-
ease provides many benefits, including faster diagnosis and lower cost of exam-
ination (Fajri et al., 2023). Based on the volume, variety, and velocity charac-
teristics; feature selection methods face the following threefold challenges con-
cerning data mining: feature selection techniques usually require large amounts
of learning time, so it is hard for processing speed to catch up with the change of
big data; generally, datasets not only include an immense amount of irrelevant
and/or redundant features, but also have possible noises of different degrees
and different types, which greatly increases the difficulty of selecting features;
some data are unreliable/forged, due to different means of acquisition, or even
loss, which further enhances the complexity of feature selection (Rong et al.,
2019).

To calculate the cost factor, two methods can be used: 1. Cost-sensitive
classification design and 2. Cost-sensitive feature selection method design.
The first method is highly dependent on a classification algorithm like the de-
cision tree, and the decision maker must perform all the classification steps.
In the second method, the decision maker obtains a feature subset with the
most predictive power and then can use any classifier(Ali, Khan, et al., 2020).
Researchers in different fields have used various methods to choose the most
informative groups of the primary features to build higher accuracy, speed, and
lower-cost models. In many review articles, these methods have been reviewed
based on different perspectives, including Evolutionary Computation (Xue et
al., 2015), clustering approaches (Hancer et al., 2020), semi-supervised feature
selection methods (Sheikhpour et al., 2017), ensemble feature selection meth-
ods (Bolón-Canedo & Alonso-Betanzos, 2019), swarm intelligence approaches
(Nguyen et al., 2020), and similar approaches. It is discussed that each contains
a collection of articles related to that perspective being considered at different
times.

Real-world applications often involve significant costs in data acquisition,
including time, financial and computational resources. Most existing feature
selection methods overlook the associated costs (Mohanrasu et al., 2025). Re-
searchers (Liang, 2024) unlike most of the existing methods simply adding or
deleting features one by one, the proposed method uses an adaptive swarm
intelligence algorithm to search the optimal subset. This algorithm achieves
a more reasonable balance between the exploration and exploitation utiliz-
ing a cosine congestion factor, and is employed in cost-sensitive feature selec-
tion problem. The application of cost-based feature selection in various fields,
including medicine (Fajri et al., 2023), image processing (Smits & Annoni,
2000b), phishing (Zangooei et al., 2019), computer networks (Tahir, 2016),
and other fields, show the positive effect of these methods on increasing the
speed and accuracy of machine learning methods in various fields.
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This paper for the first time provides a comprehensive review of the research
presented in the cost-based feature selection. Search techniques, evaluation
criteria, number of objective functions, and data used in cost-based feature
selection methods have been investigated. The widely used areas of cost-based
feature selection and the datasets used in these applications are discussed.

In many real-world applications (e.g., healthcare, IoT, finance), the cost of
acquiring features can drastically impact decision-making systems. However,
most traditional FS methods ignore this factor. Although various cost-sensitive
FS methods exist, there is no comprehensive taxonomy that critically compares
their effectiveness in different cost settings or real-time environments. We argue
that the current CBFS methods often fail to model practical, domain-specific
costs, and that future research must explicitly consider interpretability, adapt-
ability, and deployment constraints. This paper categorizes CBFS algorithms
from a multi-dimensional perspective including evaluation strategy, cost mod-
eling depth, and scalability.

The rest of the article is presented in the following order. Part 2 will discuss
the review and definition of cost-based learning. In the third part, we will
review the works on cost-based feature selection in terms of search techniques,
evaluation criteria, the number of objectives, and data used. In the fourth
part, we will introduce the areas where cost-based feature selection has been
used. We introduce the datasets used in works done in the fifth section. At
last, in section six, summarization, conclusions, and suggestions for the future
have been discussed.

2. Cost-based Learning

As a branch of machine learning, cost-sensitive learning focuses on cost-
related problems. In machine learning, two essential types of cost can be
considered: feature cost and misclassification cost (Ali, Khan, et al., 2020).
Misclassification costs assume unequal costs for different types of errors, and
the goal is to minimize prediction costs. Minimizing the cost of misclassifica-
tion has also attracted the attention of many machine learning researchers in
past years (De Bock et al., 2020; Ji & Carin, 2007; Lu et al., 2019; Pendharkar,
2006; Xiong & Zuo, 2017).

Choosing suitable features from the primary feature set is an important task
in machine learning. Researchers have proposed various methods to solve this
challenge. However, most of them consider an equal cost for all features. This
assumption may be wrong if achieving the attribute values is expensive. For
example, the diagnostic value obtained in laboratory tests is costly in medical
diagnostics. Feature costs have been less studied compared to misclassification
costs. In these cases, the best solution is to select a model that provides accept-
able classification performance, but at a much lower cost (Teisseyre Pawe land
Zufferey & S lomka, 2019).
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Feature cost can be interpreted as the cost of acquiring a feature set. This
cost might include various factors like difficulty, time, and money. However,
the cost of different features may vary in many real-world applications, and
this difference can be significant to affect the feature selection outcome (Zhou
et al., 2016).

We can summarize a basic feature-cost-sensitive system as follows:

(1) S = (N, F,L, Va ∈ F
⋃

L, Ia |a ∈ F
⋃

L, C)

where N refers to the test set of data instances, F and L indicate the fea-
tures and class variables, respectively. Va shows the possible values for every a ∈
F
⋃
L that the information function for every a is shown by Ia : N → Va. Fi-

nally, the feature cost function is presented by C : F → R+
⋃

0. Let’s consider
the data of some patients N = {n1, n2, ..., nr} where each data sample contains
some features such as gender, age, and gene type F = {gender, age, and gene type}.
If we consider the decision variable as F = {sick, healthy} and C is empty;
Then, all the features are assumed to have equal costs (Zhou et al., 2016).

3. Existing research on Cost-based Feature Selection

In building a learning model, the purpose of feature selection is to choose the
most informative, relevant, and practical group of features from a large group of
redundant and possibly irrelevant features. Instead of increasing the model’s
accuracy, the presence of irrelevant features also affects the accuracy. Most
existing methods and approaches for feature selection consider an equal cost
for all features. However, each feature can have a different cost in many real-
world applications. Ignoring the cost of a feature makes it a purely theoretical
approach to create a good subset of features, but in practice, we cannot use
them due to the cost imposed (Zhou et al., 2016).

There were fewer studies on the cost of feature selection compared to the cost
of classification. However, today these methods are attracting the attention of
many researchers. With a focus on the second category of cost-sensitive learning
methods (cost-sensitive feature selection), This paper for the first time provides
a comprehensive review of the research presented in the cost-based feature
selection. search techniques, evaluation criteria, number of objective functions,
and data used in cost-based feature selection methods have been investigated.
The widely used areas of cost-based feature selection and the datasets used in
these applications are discussed.

The articles in this area use different terminology and titles to express the
cost-based feature selection. To cover as many relevant articles as possible, we
have tried to include all terms equivalent to cost-based feature selection in this
study. For this purpose, in the initial phase, we created a CSV file of titles,
abstracts, and keywords related to 25 selected articles by preliminary review of
several articles related to different years in this field. In the next step, using the
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Power BI tool and the collection of words in the CSV file, some pre-processing
works such as removing stop words, converting words into words with lowercase
letters, and removing punctuation marks and others have been done.

Power Query, part of the Microsoft Power BI suite, is a tool that automates
the process of getting data into Excel and will save you hours of dull, repetitive,
and error-prone work. Power Query makes it easy to extract data from many
different data sources, filter that data, aggregate it, clean it, and perform cal-
culations on it, finally loading that data into either your worksheet or directly
into the new Excel 2013 Data Model used by Power Pivot. (Machiraju & Gau-
rav, 2018). As a result, a clean textual dataset of frequent terms is provided
to make search terms. Figure 2 shows the word cloud of the 40 most frequent
words.

Figure 2. The word cloud of the 40 most frequent words.

The words that are consistent with our purpose in this research are high-
lighted in red. As is clear from the word cloud, cost-based feature selection
is mentioned with a variety of synonyms in the reviewed articles, and accord-
ingly; to create keywords, sentences were made from the possible combinations
of these words. The following phrases are used in the search phase:

”Cost-sensitive feature selection”—— ”Cost-based feature selection” ——”Cost-
effective feature selection”——” Cost-based attribute selection”——” Cost-
sensitive attribute selection”——” Cost-effective selection”

In the first step of the search, nearly 1506 articles were found in all periods
based on the mentioned search phrases. After reviewing the found articles,
irrelevant articles (articles that do not cover the selected topic, articles that
were referenced only by the search term, articles that were not fully available,
or articles written in the local language) are filtered. A total of 129 articles
were selected to answer the questions of this study. The number of articles
retrieved by year is shown in Figure 3.
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Figure 3. Retrieved Article Statistics by Year.

As is evident in Figure 3 graph, the concentration of researchers in this field
has been growing in recent years. Figure 4 compares the number of articles
found by title searched and the number of articles selected for review based on
publication year.

Figure 4. Comparing the number of found articles with the
number of selected articles.

Feature selection is a challenging and complex issue, not only because we are
supposed to select a small subset of the best features from a large data space
but also based on the interactions and effects of the features on each other.
A single feature may not be significantly related to the target class, but if it



8 S. Beiranvand, M.B. Dowlatshahi, A. Hashemi

is considered together with other features, it will increase the accuracy of the
machine learning model. On the other hand, there may be features that are
known to be highly related to the target class alone, but when they are consid-
ered together with other features, not only they are not effective in increasing
the accuracy of the model, but they may even decrease the accuracy of the
learning model and be known as a redundant feature. Therefore, removing or
selecting such features may be an obstacle to reaching an optimal subset of the
set of primary features.

The traditional feature selection methods that go through features individ-
ually to arrive at the best subset do not help us achieve our goal well. The
selected feature subset should be assessed together as a whole. Thus, two main
factors, including evaluation criteria and search techniques, should be involved
in the feature selection process.

The evaluation criteria measure and evaluate the feature subset’s quality
that guides the search, and the search techniques investigate the search space
to reach the optimal subset. Feature selection performs with two goals: en-
hancing the performance of machine learning models and reducing the number
of features to speed up learning and prediction in various domains. Often these
two goals conflict with each other. Therefore, we can consider the feature selec-
tion process as a multi-objective optimization problem where a set of trade-off
features should be found considering these two objectives (Zhou et al., 2016).

The step-by-step method used for this study is illustrated in the Figure 5.

Figure 5. The step-by-step method used for this study.
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Therefore, in this study, we attempted to consider the cost of the two main
factors mentioned in the feature selection approaches and the number of targets
these methods pursue in feature selection in reviewing the papers presented
on the problem of cost-based feature selection. For each area we want to
explore, we should assess and analyze our level of accuracy using data specific
to that topic under the same conditions. The data used in the article is diverse
and under different conditions, as this article intends to discuss how to select
cost-based features used in various real-world applications. Therefore, when
considering the work done in this area, the data should be considered based
on the various features of other applications in addition to the previous three
factors. The results of these investigations are given in the following section.

3.1. Search Techniques. Determining an appropriate search technique is
very important for feature selection methods. Several search algorithms based
on different techniques have been presented and used to find the best fea-
ture subset from the main feature set. In this research, three main categories
of meta-heuristic, innovative, and comprehensive, were considered to separate
the search methods used in cost-based feature selection. Meta-heuristic search
techniques such as Ant colony optimization and genetic algorithm, etc. in the
category of meta-heuristic techniques, forward, backward, and greedy feature
selection algorithms in the category of heuristic techniques and branch and
bound algorithms, backtracking, and dynamic programming in the category of
brute-force techniques, were categorized.

Figure 6 shows the usage of the three categories identified by the search tech-
nique among the articles reviewed. As is evident in the diagram, most of the
search algorithms used in the reviewed research are in the category of heuristic
methods. Figure 6 shows a statistical comparison of search methods, and Fig-
ure 7 shows the procedure of focusing on each category of search techniques.
To date, the number of peer-reviewed articles has been measured over three
periods: . . . -2010, 2011-2015, and 2016-present. It can be inferred from this
graph that the focus of the research investigated was on using the brute-force
method. In recent years, meta-heuristic methods have been used more than
brute-force methods in this classification. The use of the brute force method
in the graph shows the downward growth of this category of methods in recent
studies.

Researchers focus on each method category because of that category’s pos-
itive and influential role in achieving the researcher’s goals. Therefore, it can
be concluded that the category of heuristic methods achieved its goals more
effectively than other methods in the achievement of researchers in cost-based
feature selection. The graph shows a decreasing trend in the use of brute force
techniques in this area, but the difference is not so significant that it can be
asserted that these techniques do not have a positive and definite effect on
achieving goals. Given the data growth rate in recent years, the high compu-
tational complexity of brute-force methods can be an obstacle to researchers
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turning to these methods. Heuristic methods, because they search specific
parts of the data, reach results faster. Metaheuristic algorithms can solve a
problem with reasonable speed and accuracy by providing a general solution
without knowing the problem. In any case, the classification of search methods
by frequency of use is generally classified in the following order: heuristics,
metaheuristics, and brute-force.

Table 1 presents the categories of peer-reviewed articles in terms of search al-
gorithms. Machine learning methods inspired by nature have generally yielded
promising results in feature selection. In the article (Ciupke, 2006), researchers
used the ant colony optimization algorithm to select cost-sensitive features.
Researchers (Cui et al., 2024) and (Y. Zhang et al., 2015) have used the parti-
cle swarm optimization algorithm. Other researchers (Botes et al., 2017) have
used the ant colony optimization algorithm in their research.

Figure 6. Statistics of methods based on search techniques.

Although heuristic methods are computationally efficient and easy to im-
plement, they often rely on simplistic assumptions and lack flexibility in han-
dling complex or multi-objective cost settings. In contrast, meta-heuristic ap-
proaches like PSO, ACO, and GA offer stronger global search capabilities and
can effectively explore the trade-off between cost and accuracy. However, their
performance is highly sensitive to parameter tuning and they incur higher com-
putational overhead. Brute-force methods ensure optimality but are imprac-
tical for large datasets. Hybrid approaches attempt to combine the strengths
of multiple techniques, but often at the expense of increased complexity and
reduced interpretability. Thus, the choice of search strategy should consider
the nature of the problem, data size, and available computational resources.

3.2. Evaluation criteria. Criteria for evaluating features are crucially impor-
tant in constructing feature selection algorithms. Criteria define the details of
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Table 1. Classification of reviewed articles based on the
search technique.

Search Tech-

nique

Reference

Brute-force (Liao et al., 2019), (Zhao et al., 2013a), (Zhao et al., 2013b), (Liao

et al., 2014), (Zhao & Zhu, 2014), (Asharaf & Vijayan, 2015), (J. Li

et al., 2015), (Zhao et al., 2016), (Fang et al., 2017), (S. Yu & Zhao,

2018)

Heuristic (Smits & Annoni, 2000b), (Smits & Annoni, 2000a), (Mej-Lavalle,

2008), (Levering & Cutler, 2009), (Santos-Rodr& Garc-Garc, 2010),

(D. Zhang & Shen, 2011), (Niu et al., 2014), (Bolón-Canedo, Reme-

seiro, et al., 2014), (Liu et al., 2014), (W. Qian et al., 2015), (Y.

Zhang, Gong, et al., 2016), (Early et al., 2016), (Liu et al., 2017b),

(Bach & Werner, 2018), (C.-W. Huang et al., 2018), (Y. Chen et

al., 2018), (Lira et al., 2018), (Q. Huang et al., 2018), (An & Zhou,

2019), (J. Huang et al., 2019), (Das et al., 2020), (Das et al., 2021),

(G. Qian et al., 2004), (Chang et al., 2012), (Joshua, 2013), (Bolón-

Canedo, Porto-D, et al., 2014), (Bolón-Canedo et al., 2015), (X. Li

et al., 2016), (J.-K. Li et al., 2016), (Vu et al., 2016), (Teisseyre

Pawe land Zufferey & S lomka, 2019), (Zhou et al., 2016), (Tan et

al., 2017), (Botes et al., 2017), (Maldonado et al., 2017), (Liu et

al., 2017a), (Secerbegovic et al., 2018), (Kachuee et al., 2018), (le

Roux et al., 2018), (Liao et al., 2018), (Zangooei et al., 2019), (Ben-

Peña et al., 2019), (Zhao & Yu, 2019), (Jiang et al., 2019), (Lee et

al., 2020), (Imran Ali et al., 2020), (Long et al., 2021), (Abdulla

& Khasawneh, 2020), (Barushka & Hajek, 2020), (Chakraborty et

al., 2021), (Jagdhuber, Lang,& Rahnenführer, 2020), (Raynal et al.,

2023), (Javanmardi, 2011), (Pocock, 2012), (López, 2014), (Bolón-

Canedo, 2014), (Porto D, 2015), (Tahir, 2016), (Saeedi, 2018), (Y. Li

et al., 2022), (Momeni et al., 2021), (Teisseyre Pawe land Klonecki,

2021), (Jagdhuber & Rahnenführer, 2021), (Sun et al., 2021), (Yan

et al., 2021), (BenPeña, 2021), (Gresser et al., 2021), (Gan et al.,

2022), (Tao et al., 2021), (Bhuyan & Chakraborty, 2022), (Taylor

et al., 2022), (Klonecki & Teisseyre, 2023), (McCombe et al., 2022),

(M. Huang et al., 2022), (Mccombe et al., 2022), (Casella et al.,

2022),(Raynal & Onnela, 2021) ,(Valancius et al., 2023) , (Knauer

& Rodner, 2023), (Casella et al., 2023), (Yue et al., 2023), (Casella,

2023), (Janisch et al., 2024), (C. M. Chen et al., 2024), (J.-R. Yu

et al., n.d.), (Yang et al., n.d.), (Ogawa et al., 2024), (Klonecki &

Teisseyre Pawe land Lee, 2024), (Shi et al., n.d.), (C. M. Chen et al.,

2024), (Seethalakshmi et al., 2024),(K. Huang et al., 2025), (Mohan-

rasu et al., 2025), (Al-Ahmari & Nadeem, 2025), (Z. Li et al., 2025),

(Ahajjam et al., 2025)

Meta

Heuris-

tic

(Ciupke, 2006), (Ali, Khan, et al., 2020), (Y. Zhang et al., 2019),

(Weiss et al., 2012), (Suryani et al., 2022), (Cui et al., 2024), (Za-

hirnia et al., 2015), (Akyon & Kalfaoglu, 2019), (Srimani & Koti,

2011), (Weiss et al., 2013), (Min et al., 2014), (Y. Zhang et al.,

2015), (Bian et al., 2016), (Aydogan et al., 2016), (Niu et al., 2016),

(Y. Zhang, Zhang, et al., 2016), (Min & Xu, 2016), (Y. Zhang et

al., 2017), (Jagdhuber, Lang, Stenzl, et al., 2020), (Ali, Bilal, et al.,

2020), (Feng et al., 2020), (Namakin et al., 2022), (Dharmalingam

& Kumar, 2022), (Fajri et al., 2023)
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Figure 7. The growing trend of using search techniques.

feature selection evaluation. The criteria should be chosen according to the
purpose of the feature selection. For example, the optimal set may be the
small set that can give the best estimate based on the accuracy of the pre-
diction. In general, feature selection aims to identify more critical, efficient,
and cost-effective features in the data. The remaining features are known as
redundant or unrelated features.

In the cost-based feature selection domain, as in other feature selection do-
mains, researchers used a variety of evaluation criteria. Individual studies in
cost-based feature selection were statistically analyzed based on the evaluation
criteria. Based on the general classification of these methods, the articles under
consideration were classified into four categories: wrappers, filters, embedded,
and hybrids.

The name of the filter is obtained by filtering out unwanted features before
training. Extensive research was needed to improve the efficiency of mea-
surement accuracy. The filter method is also used independently of machine
learning methods. This class of feature selection methods uses insights based
on common features of data to evaluate the effectiveness of features. These
methods work with high-dimensional data and provide a subset of available
features that may be useful for some learning processes.

A filter feature selection model consists of two steps. In the first stage,
feature selection is performed independently of the learning algorithm using
criteria such as predictive power, distance, dependency, and stability. The
second stage is training and testing. The second step is to perform a training
and testing process to achieve test data prediction accuracy(Bayati et al., 2022;
Hashemi, Joodaki, et al., 2022; Miri, Dowlatshahi, Hashemi, et al., 2022). The
working procedure of the filter methods can be seen in Figure 8.
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Figure 8. Working procedure of filter methods.

The simplest feature selection method can involve a learning algorithm as
an evaluation method to decide whether to exclude or include a specific feature
in a subset of useful features. The explicit goal of this type of method is to find
the best subset of features with the highest possible accuracy. This category
of feature selection methods is called wrapper methods. A wrapper model
consists of two steps. The first step is to select a subset of the most valuable
features based on the accuracy provided by the machine learning algorithm as
a baseline. The second stage of these methods is similar to the second stage
of filter methods. Since the first step only stores a subset of the best features,
the second step uses this subset to test the accuracy of the learning algorithm.
The first step is equivalent to the second step of reducing the dimension of
the data (Hashemi et al., 2023; Hashemi, Dowlatshahi, & Nezamabadi-pour,
2021b; Hashemi, Dowlatshahi, et al., 2022; Hashemi, Pajoohan, et al., 2022) .
Figure 9 shows the working routine of wrapper methods.

Filter and embedded methods introduced as feature selection methods are
independently used to increase accuracy. The embedded approach is the third
category of feature selection methods. These methods are similar to wrapper
methods, which are based on the concept that the features selected by these
methods are specifically selected for a particular learning algorithm. In addi-
tion, the features are selected during the learning process in these methods.
Embedded methods that combine feature selection with used learning methods
as part of the learning process can be more efficient for several reasons. They
can take advantage of data availability in the learning process due to integra-
tion with feature selection and do not need to separate training data into two
parts: training and evaluation data. Therefore, it can be said that this type
of method can reach the most efficient subset of features faster because there
is no predictor of retraining (Hashemi et al., 2020a; Hashemi, Dowlatshahi, &
Nezamabadi-pour, 2021c, 2021a; Hashemi, Dowlatshahi, & Nezamabadi-Pour,
2021).

The three introductory categories of filters, wrappers, and embedded are
the main categories of evaluation criteria presented in feature selection studies.
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Figure 9. Working procedure of wrapper methods.

Since each category has its advantages and disadvantages, it is necessary to
combine these methods to remove the disadvantages and use the advantages
simultaneously. Therefore, a combination of these methods has been used in
some studies as hybrid methods.

Hybrid methods represent the latest developments in feature selection. A hy-
brid method can be formed by combining two different methods, two methods
of the same criterion, or two feature selection approaches. The hybrid method
attempts to inherit the advantages of both methods by combining their com-
plementary strengths (Ang et al., 2015). It uses different evaluation measures
in different search stages to improve the efficiency and prediction performance
with better computational performance. In Table 2 a comparison of filtering,
wrapper, and embedded methods is presented from various aspects (Rong et al.,
2019). Table 3 describes the advantages and disadvantages of each evaluation
method. (Ang et al., 2015).

Table 2. Comparison of Commonly Used Feature Selection
Methods (Rong et al., 2019).

Criteria Filter Wrapper Embedded

Interact with classifiers No Yes Yes

Computational cost Comparatively low Comparatively high Depends

Accuracy Comparatively low Comparatively high Comparatively high

Model feature dependence Depends Yes Yes

Robustness Yes Yes Yes

Risk of overfitting No Yes Yes

Figure 10 shows the use of each of the four categories defined as evaluation
criteria in the studies reviewed in this article. As can be seen in Figure 10, the
majority of articles used the wrapper strategy to assess features. Filters and
embedded methods are in the following order: Interestingly, the percentage of
hybrid processes in this area is very low.
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Table 3. Advantages and Disadvantages of feature evalua-
tion(Ang et al., 2015).

Method Advantage Disadvantage

Filter
• Faster than wrapper

• Scalable

• Classifier independent

• Better computational com-

plexity than wrapper

• Better generalizable prop-

erty

• Ignores interaction be-

tween classifiers

• Ignores dependency among

features

Wrapper
• Interacts with classifier

• Considers dependence

among features

• Higher performance accu-

racy than filter

• More prone to overfitting

• Classifier specific

• Requires expensive compu-

tation

Embedded
• Interacts with classifier

• Better computational com-

plexity than wrapper

• Higher performance accu-

racy than filter

• Less prone to overfitting

than wrapper

• Considers dependence

among features

• Classifier specific

Hybrid
• Higher performance accu-

racy than filter

• Better computational com-

plexity than wrapper

• Less prone to overfitting

than wrapper

• Classifier specific

Figure 11 shows the process of using cost-based feature selection methods
in each of the determined categories of evaluation criteria in different years.
As can be seen in this graph, routines using various methods have been on
the rise in recent years, indicating the willingness of researchers to apply them.
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Figure 10. Statistics of articles based on evaluation criteria.

Among methods, the growth rate of using wrapper methods is higher than other
methods. Filter, embedded, and hybrid techniques have been in the following
positions over the last five years. The interesting thing to note is that the slope
of the embedded methods graph is steeper than the filter methods, which can
be concluded that although the number of filter methods is still more used, the
tendency to use this category of methods has grown more compared to previous
years. Hybrid methods are less used than other categories. In Table 4, the

Figure 11. The growing trend of using evaluation criteria.

articles reviewed in this research have been categorized in terms of evaluation
criteria.

Filter methods are appealing due to their independence from specific clas-
sifiers and low computational cost. However, their inability to model feature
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Table 4. Classification of reviewed articles based on evalua-
tion criteria.

Evaluation

criteria

Reference

Wrapper (Ciupke, 2006), (Ali, Khan, et al., 2020), (Fang et al., 2016), (Teis-

seyre Pawe land Zufferey & S lomka, 2019), (Liao et al., 2019), (Zhao

et al., 2013a) , (Zhao et al., 2013b), (Liao et al., 2014), (Zhao &

Zhu, 2014), (Asharaf & Vijayan, 2015), (J. Li et al., 2015), (Zhao et

al., 2016), (Y. Zhang, Gong, et al., 2016), (Smits & Annoni, 2000b),

(Smits & Annoni, 2000a), (Mej-Lavalle, 2008), (Levering & Cutler,

2009), (Santos-Rodr& Garc-Garc, 2010), (Niu et al., 2014), (Akyon

& Kalfaoglu, 2019), (W. Qian et al., 2015), (Early et al., 2016),

(Liu et al., 2017b), (Q. Huang et al., 2018), (J. Huang et al., 2019),

(Chang et al., 2012), (Joshua, 2013), (Botes et al., 2017), (Kachuee

et al., 2018), (le Roux et al., 2018), (Liao et al., 2018), (Jiang et

al., 2019), (Barushka & Hajek, 2020), (Chakraborty et al., 2021),

(Jagdhuber, Lang, & Rahnenführer, 2020), (Saeedi, 2018), (Y. Li et

al., 2022), (Y. Zhang et al., 2019), (Srimani & Koti, 2011), (Min et

al., 2014), (Y. Zhang et al., 2015), (Aydogan et al., 2016), (Niu et

al., 2016), (Y. Zhang, Zhang, et al., 2016), (Min & Xu, 2016), (Y.

Zhang et al., 2017), (Jagdhuber, Lang, Stenzl, et al., 2020), (Feng et

al., 2020), (Jagdhuber & Rahnenführer, 2021), (Gresser et al., 2021),

(Cui et al., 2024), (BenPeña, 2021), (Gan et al., 2022) (Mccombe

et al., 2022), (Bian et al., 2016) , (Bhuyan & Chakraborty, 2022),

(Taylor et al., 2022), (M. Huang et al., 2022), (Weiss et al., 2012),

(Suryani et al., 2022), (Fang et al., 2017), (Casella et al., 2022),

(Dharmalingam & Kumar, 2022), (Valancius et al., 2023), (Knauer

& Rodner, 2023), (Casella et al., 2023), (Yue et al., 2023), (Fajri

et al., 2023), (Casella, 2023), (Janisch et al., 2024), (C. M. Chen et

al., 2024), (J.-R. Yu et al., n.d.), (Yang et al., n.d.), (Ogawa et al.,

2024), (Klonecki & Teisseyre Pawe land Lee, 2024), (Shi et al., n.d.),

(C. M. Chen et al., 2024), (Seethalakshmi et al., 2024), (K. Huang

et al., 2025), (Mohanrasu et al., 2025), (Ahajjam et al., 2025)

Filter (D. Zhang & Shen, 2011), (Bolón-Canedo, Remeseiro, et al., 2014),

(Liu et al., 2014), (Zahirnia et al., 2015), (Bach & Werner, 2018),

(Y. Chen et al., 2018), (Das et al., 2020), (Das et al., 2021), (G.

Qian et al., 2004), (Weiss et al., 2013), (Bolón-Canedo, Porto-D, et

al., 2014), (Bolón-Canedo et al., 2015), (X. Li et al., 2016), (J.-K. Li

et al., 2016), (Vu et al., 2016), (Maldonado et al., 2017), (Liu et al.,

2017a), (Zangooei et al., 2019), (Imran Ali et al., 2020), (Long et al.,

2021), (Pocock, 2012), (López, 2014), (Bolón-Canedo, 2014), (Porto

D, 2015), (Tahir, 2016), (Teisseyre Pawe land Klonecki, 2021), (Sun

et al., 2021), (Tao et al., 2021) , (Al-Ahmari & Nadeem, 2025), (Z.

Li et al., 2025)

Embedded (Zhou et al., 2016), (C.-W. Huang et al., 2018), (Lira et al., 2018),

(McCombe et al., 2022), (An & Zhou, 2019), (Tan et al., 2017), (Ben-

Peña et al., 2019), (Zhao & Yu, 2019), (Lee et al., 2020), (Abdulla &

Khasawneh, 2020), (Javanmardi, 2011), (Momeni et al., 2021), (Yan

et al., 2021), (Klonecki & Teisseyre, 2023)

Hybrid (Namakin et al., 2022), (Ali, Bilal, et al., 2020), (Raynal et al., 2023)
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interactions and cost-aware dynamics limits their effectiveness in real-world
applications. Wrapper methods often yield better performance since they eval-
uate feature subsets using a learning algorithm, but they are resource-intensive
and may suffer from overfitting. Embedded methods strike a balance between
accuracy and efficiency but are highly model-dependent. Hybrid methods at-
tempt to leverage the advantages of both filter and wrapper techniques, yet
their design and validation can be nontrivial. Overall, the selection of an eval-
uation strategy must consider not only performance metrics but also practical
deployment constraints like interpretability and speed.

3.3. Number of objectives. Identifying key features is necessary for formu-
lating the process of selecting more efficient features as an optimization solution
for machine learning algorithms. There are various criteria to determine the
degree of influence of a feature on accuracy improvement, each evaluated using
an objective function. The degree of importance of features can be determined
by simultaneously optimizing several criteria and considering different aspects.
At the same time, the criteria under consideration may contradict each other,
further complicating the task. Therefore, multi-objective optimization strate-
gies can be used to overcome this challenge. The multi-objective type arises
when you make a trade-off between two opposing goals and decide to pick the
best feature(Al-Tashi et al., 2020).

In this study, the reviewed articles are divided into three categories, Single-
objectives, Multi-objectives, and Many-objectives, depending on the number
of objectives set for optimization. Figure 12 shows the number of articles
published in each category. As can be seen from this graph, 76% of the selected
articles are in the Single-objectives category, and the rest are in the multi-
objectives category. However, none of the peer-reviewed papers fall into the
Many-objectives category.

The Many-objectives category is intended to distinguish between papers
that consider more than one target or criterion when determining the effect of
a function on method optimization. The lack of research work in this category
can lead to two different results. First, good results can be expected from using
this approach because this type of method has never been used, and second, it
may have been used, but it did not lead to the submission of a research paper
because it did not yield acceptable results.

More use of single-objective methods compared to multi-objective methods
can indicate that these methods are more effective than multi-objective meth-
ods. However, some research areas are multi-objective in nature, and research
work, including feature selection in these areas, requires the consideration of
more than one criterion.

Figure 13 shows the procedure of applying the three mentioned categories
in cost-based feature selection, determined based on the number of objectives
in studies reviewed in different years. The graph shows that during the last
five years, the rate of using single-objective and multi-objective methods has
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Figure 12. Categorization of papers based on the number of
used objectives.

grown upward, and there is still more tendency towards using single-objective
methods than multi-objective methods.

Figure 13. Growth routine using the number of considered
objectives.

In Table 5. Classification of reviewed articles based on the number of ob-
jectives, the reviewed researches are separated based on the three categories in
this section.

Single-objective methods, while simpler and more interpretable, often fail to
reflect the real-world trade-offs between performance and cost. Multi-objective
approaches provide a more realistic framework by optimizing for both accuracy
and cost simultaneously. However, they introduce complexity in both algorithm
design and solution interpretation. Pareto-optimal solutions are theoretically
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Table 5. Classification of reviewed articles based on the num-
ber of objectives.

Number of

objectives

Reference

Single-

objectives

(Ciupke, 2006), (Ali, Khan, et al., 2020), (Teisseyre Pawe land Zuf-

ferey & S lomka, 2019), (Liao et al., 2019) , (Zhao et al., 2013a)

, (Zhao et al., 2013b), (Liao et al., 2014), (Zhao & Zhu, 2014),

(Asharaf & Vijayan, 2015), (J. Li et al., 2015), (Smits & Annoni,

2000a), (Mej-Lavalle, 2008), (Levering & Cutler, 2009), (Santos-

Rodr& Garc-Garc, 2010), (Niu et al., 2014), (Akyon & Kalfaoglu,

2019), (Early et al., 2016), (Liu et al., 2017b), (Q. Huang et al.,

2018), (J. Huang et al., 2019), (Chang et al., 2012), (Joshua, 2013),

(Botes et al., 2017), [61], (Kachuee et al., 2018), (le Roux et al.,

2018), (Liao et al., 2018), (Jiang et al., 2019), (Chakraborty et al.,

2021), (Jagdhuber, Lang, & Rahnenführer, 2020), (Saeedi, 2018),

(Y. Li et al., 2022), (Srimani & Koti, 2011), (Min et al., 2014), (Bian

et al., 2016), (Aydogan et al., 2016), (Niu et al., 2016), (Jagdhuber,

Lang, Stenzl, et al., 2020), (Feng et al., 2020), (Jagdhuber & Rah-

nenführer, 2021), (Gresser et al., 2021), (BenPeña, 2021), (Gan et

al., 2022), (Mccombe et al., 2022), (Taylor et al., 2022), (M. Huang

et al., 2022), (Weiss et al., 2012), (Suryani et al., 2022), (D. Zhang

& Shen, 2011), (Liu et al., 2014), (Zahirnia et al., 2015), (Bach

& Werner, 2018), (Y. Chen et al., 2018), (Das et al., 2020), (Das

et al., 2021), (G. Qian et al., 2004), (Weiss et al., 2013), (Bolón-

Canedo, Porto-D, et al., 2014), (Vu et al., 2016), (Maldonado et

al., 2017), (Liu et al., 2017a), (Zangooei et al., 2019), (Imran Ali

et al., 2020), (Raynal et al., 2023), (Porto D, 2015), (Tahir, 2016),

(Teisseyre Pawe land Klonecki, 2021), (Sun et al., 2021), (Tao et

al., 2021), (Zhou et al., 2016), (C.-W. Huang et al., 2018), (Lira et

al., 2018), (S. Yu & Zhao, 2018), (McCombe et al., 2022), (An &

Zhou, 2019), (Tan et al., 2017), (Ben-Peña et al., 2019), (Zhao &

Yu, 2019), (Lee et al., 2020), (Abdulla & Khasawneh, 2020), (Javan-

mardi, 2011), (Momeni et al., 2021), (Klonecki & Teisseyre, 2023),

(Smits & Annoni, 2000b), (Casella et al., 2022), (Raynal & Onnela,

2021), (Valancius et al., 2023), (Knauer & Rodner, 2023), (Casella

et al., 2023), (Casella, 2023), (C. M. Chen et al., 2024), (J.-R. Yu

et al., n.d.), (Ogawa et al., 2024), (Klonecki & Teisseyre Pawe land

Lee, 2024), (C. M. Chen et al., 2024), (K. Huang et al., 2025), (Z.

Li et al., 2025), (Ahajjam et al., 2025)

Multi-

objectives

(Zhao et al., 2016), (Fang et al., 2017), (Bolón-Canedo, Remeseiro,

et al., 2014), (W. Qian et al., 2015), (Y. Zhang et al., 2015), (Fang

et al., 2016), (Bolón-Canedo et al., 2015), (X. Li et al., 2016), (J.-K.

Li et al., 2016), (Y. Zhang, Zhang, et al., 2016), (Min & Xu, 2016),

(Y. Zhang et al., 2017) , (Y. Zhang et al., 2019), (Long et al., 2021),

(Yan et al., 2021), (Bhuyan & Chakraborty, 2022), (Ali, Bilal, et al.,

2020), (Barushka & Hajek, 2020), (Pocock, 2012), (López, 2014),

(Bolón-Canedo, 2014), (Cui et al., 2024), (Y. Zhang, Gong, et al.,

2016), (Yue et al., 2023), (Fajri et al., 2023), (Janisch et al., 2024),

(Yang et al., n.d.), (Shi et al., n.d.), (C. M. Chen et al., 2024),

(Mohanrasu et al., 2025), (Al-Ahmari & Nadeem, 2025)

Many-

objectives

-
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valuable, but selecting the final subset from the Pareto front often requires ad-
ditional criteria or domain knowledge. Despite these challenges, multi-objective
optimization represents a more holistic approach and is essential for applica-
tions with strict cost constraints.

3.4. Data. To evaluate a machine learning method, we need to use data. The
method is first supposed to extract a pattern from the training data and then
use the test data to measure the accuracy of the learning method. This data
may be the result of gathering information from previous samples and may be
used offline or online. In this study, the data used in the research study was
first divided into offline and online. However, as shown in Table 6, none of the
reviewed articles used online data.

Supervised, unsupervised, and semi-supervised are known as three categories
of feature selection methods according to class label information. Supervised
methods use labeled data to measure the predictive power of features consider-
ing class labels. Unsupervised feature selection methods evaluate the relation-
ship between the features that preserve specific properties of the data, such
as those that preserve locality or variance. Due to the use of labeled infor-
mation, supervised feature selection methods usually achieve better learning
performance than unsupervised feature selection methods. However, sufficient
labeled data is required for supervised feature selection monitoring methods,
which are expensive and require extensive expertise.

There are many unlabeled and small labeled data in many real-world appli-
cations. Semi-supervised feature selection methods have been proposed to deal
with the problem of small labeled data that use labeled and unlabeled data for
feature selection. Semi-supervised feature selection methods use data distribu-
tion or local structure of labeled and unlabeled data and label information of
labeled data to evaluate feature relevance (Dalvand et al., 2022; Hashemi et
al., 2020b; Miri, Dowlatshahi, & Hashemi, 2022).

In this research, we decided to recategorize the selected articles with this
view of the data. As it can be understood in Table 6, none of the data used
in the reviewed research was identified as unsupervised or semi-supervised.
Continuing our work, we considered types of observations according to the
number of deterministic labels from two perspectives. As we can see in Figure
14, most of the studies reviewed were classified as single-label. The significant
difference between using single-label types and multi-label types shows that
more field researchers tend to choose cost-based features in this data category
than in the others.

The sequence of data for the two categories identified in studies from different
years is shown in Figure 15. The rapid growth in the use of supervised single-
label methods in recent years shows a trend of cost-based feature selection
researchers for this data category over the years. As shown in the figures, semi-
supervised and unsupervised methods were not used in the reviewed articles.
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Table 6. Classification of Studies by Supervision Type and
Data Source

Data Type Supervision Type References

Online Unsupervised –

Online Semi-supervised –

Online Supervised-single label –

Online Supervised-multi-label –

Offline Unsupervised –

Offline Semi-supervised –

Offline Supervised-single label (Ciupke, 2006), (Ali, Khan, et al., 2020), (Liao et al.,

2019),(Zhao et al., 2013a) , (Zhao et al., 2013b), (Liao et

al., 2014), (Zhao & Zhu, 2014), (Asharaf & Vijayan, 2015),
(J. Li et al., 2015), (Smits & Annoni, 2000a),(Mej-Lavalle,

2008), (Levering & Cutler, 2009), (Santos-Rodr& Garc-Garc,

2010), (Niu et al., 2014), (Akyon & Kalfaoglu, 2019), (Early
et al., 2016),(Chang et al., 2012), (Joshua, 2013), (Botes et

al., 2017), [61], (Kachuee et al., 2018), (le Roux et al., 2018),

(Liao et al., 2018), (Jiang et al., 2019), (Chakraborty et al.,
2021), (Jagdhuber, Lang, & Rahnenführer, 2020), (Saeedi,

2018), (Srimani & Koti, 2011), (Min et al., 2014), (Aydogan
et al., 2016), (Niu et al., 2016), (Jagdhuber, Lang, Stenzl, et

al., 2020), (Feng et al., 2020), (Jagdhuber & Rahnenführer,

2021), (Gresser et al., 2021), (BenPeña, 2021), (Gan et al.,
2022), (Mccombe et al., 2022), (Weiss et al., 2012), (Suryani

et al., 2022), (D. Zhang & Shen, 2011), (Liu et al., 2014), (Za-

hirnia et al., 2015), (Bach & Werner, 2018), (Y. Chen et al.,
2018), (Das et al., 2020), (Das et al., 2021), (G. Qian et al.,

2004), (Weiss et al., 2013), (Bolón-Canedo, Porto-D, et al.,

2014), (Vu et al., 2016), (Maldonado et al., 2017), (Zangooei
et al., 2019), (Imran Ali et al., 2020), (Raynal et al., 2023),

(Porto D, 2015), (Tahir, 2016), (Teisseyre Pawe land Klonecki,

2021), (Sun et al., 2021), (Tao et al., 2021), (Zhou et al.,
2016), (C.-W. Huang et al., 2018), (Lira et al., 2018), (S. Yu

& Zhao, 2018), (McCombe et al., 2022), (An & Zhou, 2019),
(Tan et al., 2017), (Ben-Peña et al., 2019), (Zhao & Yu, 2019),

(Lee et al., 2020), (Abdulla & Khasawneh, 2020), (Klonecki

& Teisseyre, 2023), (Ali, Bilal, et al., 2020), (Smits & Annoni,
2000b), (Zhao et al., 2016), (Fang et al., 2017), (W. Qian et

al., 2015), (Y. Zhang et al., 2015), (Fang et al., 2016), (Bolón-

Canedo et al., 2015), (X. Li et al., 2016), (J.-K. Li et al.,
2016), (Y. Zhang, Zhang, et al., 2016), (Min & Xu, 2016), (Y.

Zhang et al., 2017), (Y. Zhang et al., 2019), (Barushka & Ha-

jek, 2020), (López, 2014), (Bolón-Canedo, 2014), (Cui et al.,
2024), (Y. Zhang, Gong, et al., 2016), (Casella et al., 2022),

(Raynal & Onnela, 2021), (Knauer & Rodner, 2023), (Casella

et al., 2023), (Fajri et al., 2023), (Casella, 2023), (Janisch et
al., 2024), (C. M. Chen et al., 2024), (J.-R. Yu et al., n.d.),

(K. Huang et al., 2025), (Al-Ahmari & Nadeem, 2025), (Z. Li
et al., 2025), (Ahajjam et al., 2025)

Offline Supervised-multi-label (Teisseyre Pawe land Zufferey & S lomka, 2019), (Javanmardi,
2011), (Long et al., 2021), (Yan et al., 2021), (Bhuyan &

Chakraborty, 2022), (Liu et al., 2017b), (Q. Huang et al.,
2018), (Bolón-Canedo, Remeseiro, et al., 2014), (J. Huang et

al., 2019), (Liu et al., 2017a), (Momeni et al., 2021), (Y. Li
et al., 2022), (Taylor et al., 2022), (M. Huang et al., 2022),
(Pocock, 2012), (Namakin et al., 2022), (Dharmalingam &
Kumar, 2022), (Valancius et al., 2023), (Yue et al., 2023),

(Yang et al., n.d.), (Ogawa et al., 2024), (Klonecki & Teis-
seyre Pawe land Lee, 2024), (Shi et al., n.d.), (C. M. Chen et
al., 2024), (Seethalakshmi et al., 2024), (Mohanrasu et al.,

2025)
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Figure 14. Statistics of used data.

This result could have occurred for various reasons. For example, cost-based
feature selection methods did not provide suitable results in this type of data,
or because due to the importance of the cost issue, these methods were not
tested at all, which can be examined further. It should be noted that the
authors do not claim to have reviewed all the research and some articles may
not be available and have not been reviewed for various reasons.

Most current CBFS methods assume static or uniform cost values, which
oversimplifies the cost structure encountered in real-world problems. A few
methods incorporate instance-specific or dynamic costs, but such techniques
are still underexplored. Moreover, many studies lack practical cost modeling
(e.g., acquisition time, lab test cost, or energy consumption). As a result, the
field would benefit from more robust and context-aware cost models that align
better with operational realities and support adaptive behavior during model
training or deployment.

Figure 15. The growing trend of using Data.
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4. Applications

Due to the positive impact of machine learning methods in increasing accu-
racy, these methods are used in various fields. In this article, we looked at many
studies using the impact of cost-sensitive feature selection methods to improve
accuracy in a variety of applications. To classify these studies, we looked at the
number of works performed in various fields. For a more accurate diagnosis,
medical staff must check various tests and parameters, and it is expensive to
determine each parameter, so the diagnosis of various diseases is one of the
widely used cost-based feature selection methods.

There are many articles reviewed in this study in this field. Most of these
articles have used data from different fields of medicine, such as diabetes, heart
disease, cancer, etc., in their experiments. For this reason, articles in this
category have been considered the main category called medicine.

Image processing is one of the most used fields in machine learning methods,
as many studies on different aspects of machine learning for working with data
extracted from images have been presented in various fields. Of course, the
cost-based feature selection method is no exception. The articles reviewed in
this study introduce new methods in this area. For this reason, we identified
images as the second category for applied research. In particular, this data
model can also be used in the medical field, so studies that have used this
type of data with data from other medical fields are placed in the same first
category, namely the medical category.

Some studies are conducted to provide new methods and algorithms for cost-
based feature selection. This group of studies generally considers the proposed
methods in various areas. Therefore, we assigned a third research group to this
model of articles studied in several fields.

In addition to these three categories of medicine, image, and multi-domain,
some articles have used cost-based feature selection methods in other domains.
Since the number of articles in each field is small, a category named OTHER
was considered for this category of articles. Figure 16 shows the percentage of
reviewed articles in each field. As it is known, most of the reviewed articles
are in SEVERAL categories, which indicates that most of the works presented
a general algorithm in the field of cost-based feature selection, and no specific
application field was considered. The OTHER category is second in terms of
article proportions. Figure 17 shows different application areas in this cate-
gory. This diagram shows that DEFECT PROTECTION is the most frequent
application area in this category.

Articles in this category are separated because the Image application cate-
gory can contain articles from various fields that use experimental image data.
Figure 18 shows the application areas of the articles in this category. The field
of geography is the most used field for these studies. Some papers only used
image data from the medical field, and in the main category, since the approach
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Figure 16. The percentage of reviewed articles in each field.

Figure 17. Different fields of application are placed in the
OTHER category.

is based only on image data, we placed these studies in the image category and
also considered a branch in the image category to the clinical images.

5. Benchmark Datasets

The data used by each application can be accessed from the various reposito-
ries that exist for it. Since the research reviewed in this article is about machine
learning, we naturally used a repository of these fields to prepare data to eval-
uate the proposed methods. Most of the studies in the various studies in this
area have used data available in the UCI repository. This repository contains
many data for working in different areas of machine learning, so this was worth
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Figure 18. Different fields of application are placed in the
OTHER category.

considering. Researchers created some data, and the rest used other reposito-
ries to access the data. Therefore, in this research, the articles were classified in
terms of Benchmark Datasets into three categories: UCI Repository, Self-made
Datasets, and Other Repositories. Figure 19 shows the percentage of articles
placed in all three categories. Table 5 shows the data used in each research.

Figure 19. Statistics of used benchmark data in papers.

—p3cm—p8cm—

References Dataset

References Dataset

(Smits & Annoni, 2000a) CORINE land-cover/land-use database

(Smits & Annoni, 2000b) CORINE land-cover/land-use database
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(Ciupke, 2006)RotorKit model data (Mej-Lavalle, 2008) VLDB

(Levering & Cutler, 2009) KI-04 Dataset, Retail Store Dataset

(Weiss et al., 2012) self-made

(Santos-Rodr& Garc-Garc, 2010) UCI medical datasets (Pima Indian Dia-
betes, BUPA Liver Disorders, Heart Disease, Hepatitis Prognosis or Thyroid
Disease)

(D. Zhang & Shen, 2011) ADNI dataset

(Niu et al., 2014) Mushroom, Tic-tac-toe, Voting and Zoo

(Bolón-Canedo, Remeseiro, et al., 2014) UCI (Letter, Magic04, Sat, Wave-
form, Hepatitis, Liver, Pima, Thyroid), broadinstitute (CNS, Colon, DLBCL,
Leukemia)

(Liu et al., 2014) UCI (nasa)

(W. Qian et al., 2015) real UCI data sets (Adult, Annealing, Arrhythmia,
Dermatology, Hepatitis, Stat Credit)

(Zahirnia et al., 2015) UCI (pima), Tabriz

(Early et al., 2016) RECS

(Y. Zhang, Gong, et al., 2016) Vowel, Ionosphere, Wisconsin Diagnosis
Breast Cancer (WDBC) and Sonar

(Fang et al., 2016) UCI (Diab, Iris, Glass, Liver, Wdbc, Wine, Tic-tac-toe)

(Liu et al., 2017b) USPS and YaleB (multi-class), MSRC and TRECVID
(multi-label)

(Bian et al., 2016) KDDCUP’99datasets

(C.-W. Huang et al., 2018) user0, user1, det124, det177

(Y. Chen et al., 2018) UCI (lung cancer)

(Lira et al., 2018) ACT-R

(Q. Huang et al., 2018) mulan library (Yeast, Emotions, Birds)

(Akyon & Kalfaoglu, 2019) instafake-dataset (generated)

(An & Zhou, 2019) UCI (hill, urban, arrhythmia, LSVT voice rehabilitation)
and 11 genes (colon, SRBCT, Leukemia1, DLBCL, 9 Tumors, Brain Tumor1,
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ALLAML, Brain Tumor2, Leukemia2, Lung Cancer, SMK-CAN-187)

(J. Huang et al., 2019) Mulan Library (Flags, Emotions, Birds, and Water-
quality)

(Das et al., 2020) UCI (Parkinson’s disease, Alzheimer’s Disease, rare)

(Das et al., 2021) UCI (Parkinson’s disease, Alzheimer’s Disease, rare)

(G. Qian et al., 2004) Handwritten Chinese Character Recognition

(Srimani & Koti, 2011) UCI (pima)

(Chang et al., 2012) HRCT

(Zhao et al., 2013a) UCI (Liver, Credit, Iono, Diab)

(Zhao et al., 2013b) UCI (Liver, Wdbc, Wpbc, Diab, Iono, and Credit.)

(Joshua, 2013) UCI (nasa)

(Weiss et al., 2013) UCI (Pima, Bupa, Thyroid, Hepatitis, Breast, SPECT,
Kr-Vs-Kp, Cars, Voting, Tic-Tac-Toc, Ecoli)

(Bolón-Canedo, Porto-D, et al., 2014) UCI (Hepatitis, Liver, Pima, Thyroid,
Letter, Magic04, Optdigits, Pendigits, Sat, Segmentation, Waveform, Yeast,
Brain, CNS, Colon, DLBCL, Leukemia)

(Liao et al., 2014) UCI (Tic-tac-toe, Voting, Zoo, Mushroom)

(Min et al., 2014) UCI (Tic-tac-toe, Voting, Zoo, Mushroom, Connect-4)

(Zhao & Zhu, 2014) UCI (Wisconsin Diagnostic Breast Cancer (Wdbc),
Wisconsin Prognostic Breast Cancer (Wpbc), Diabetes (Diab), and Ionosphere
(Iono))

(Asharaf & Vijayan, 2015) NASA Metrics Data Program (MDP) repository

(J. Li et al., 2015) UCI (Voting, tic-toc-toe)

(Y. Zhang et al., 2015) UCI (Wine, Vehicle, WDBC, Ionosphere, Sonar)

(Bolón-Canedo et al., 2015) VOPTICAL I1

(X. Li et al., 2016) UCI (House-votes-84, Kr-vs-kp, Mushroom, Promoters,
Tic-tac-toe, Voting)

(Zhao et al., 2016) UCI (Liver, Wdbc, Wpbc, Diab, Breast, Promoters,
Heart, Hepatitis, Sonar, Iono, Credit-a, Credit-g)
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(Zhou et al., 2016) UCI (Wine, Cancer, Heart, House, Ionosphere, Sonar,
DLBCL, Leukemia, Colon, SRBCT)

(Aydogan et al., 2016) Turken

(J.-K. Li et al., 2016) UCI (Kr-vs-kp, Mushroom,Promoters, Tic-tac-toe,
Voting)

(Niu et al., 2016) UCI (Iris, Zoo, House-votes-84, Voting, Tic-tac-toe, Mush-
room, Promoter, Kr-vs-kp)

(Vu et al., 2016) self-made

(Y. Zhang, Zhang, et al., 2016) UCI (Glass, Vehicle, WDBC, Ionosphere)

(Min & Xu, 2016) UCI (Zoo, Tic-tac-toe, Voting, and Mushroom)

(Fang et al., 2017) UCI (Diab, Iris, Glass, Liver, Wdbc, Wine, Tic-tac-toe)

(Y. Zhang et al., 2017) UCI (including Vowel, Wine, Vehicle, Segmentation,
WDBC, Ionosphere, Satellite, Sonar, LSVT, and CNAE-9)

(Tan et al., 2017) UCI (Wine, Parkinsons, Ionosphere, Breast Cancer, Soner,
Clean, Colon, Lymph)

(Botes et al., 2017) NSL-KDD data set

(Maldonado et al., 2017) Chilean bank

(Liu et al., 2017a) Barcelona, MSVCv2 and TRECVID2005, LUNG, COIL20,
Isolet1, USPS, YaleB, UMIST

(Kachuee et al., 2018) UCI (HAPT, MNIST, Reuters R8, Yahoo TRC, Mush-
room, Landsat, CTG, Synthesized, thyroid)

(le Roux et al., 2018) sheep and rhinoceros

(Liao et al., 2018) UCI (Diab, German, Heart, Image, Iono, Liver, Sonar,
Wdbc, Wpbc)

(S. Yu & Zhao, 2018) UCI (Liver, Wpbc, Promoters, Voting, Ionosphere,
Credit, Prostate-GE, SMK-CAN-187, and Waveform)

(Zangooei et al., 2019) Real-world data are collected from 5000 live English
phishing and legitimate pages from November 2015 to January 2016.

(Teisseyre Pawe land Zufferey S lomka, 2019) music, yeast, scene, flags, birds,
media mill, cal500, nuswide, medical, genbase, bookmarks, bibtex, real dataset
MIMIC-II and UCI (hepatit)
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(Ben-Peña et al., 2019) UCI (wisconsin, votes, nursery, Australian, careval,
leukemia, gastrointestinal)

(Y. Zhang et al., 2019) UCI (Zoo, WPBC, Ionosphere, Promoters, Sonar,
Urban land cover (ULC), MUSK1, LSVT)

(Zhao & Yu, 2019) AMLALLML, LEUML, UCI (Biodeg, Clean1, Credit-a,
Credit-g, DNA, EEG-EveState, German, Ionosphere, LEUML, Prostate-GE,
Sonar, Spam, Wdbc, Wpbc)

(Liao et al., 2019) UCI (Bridges, CAD-diagnosis, Credit, Cylinder-bands,
Diabetes, Diabetic-retinopathy, German, Heart, Hepatitis, Image, Ionosphere,
Mice-protein, Sonar, Wdbc, Wine, Wpbc)

(Jiang et al., 2019) UCI (diabetes, heart-c, hepatitis (36 datasets of UCI in
several applications)

(Lee et al., 2020) UCI (Chronic Kidney, Heart, Thyroid, and Breast Cancer,
Colon, Leukemia, and Prostate, Synthetic 1, Synthetic 2, Synthetic 3)

(Jagdhuber, Lang, Stenzl, et al., 2020) self-made

(Imran Ali et al., 2020) CKD

(Long et al., 2021) Scene, Flags, Emotions, Gnegative, Plant, Birds, CAL500,
Virus, Gpositive, Yeast

(Ali, Khan, et al., 2020) CKD

(Ali, Bilal, et al., 2020) CDK

(Abdulla & Khasawneh, 2020) Leukemia and DLBCL datasets

(Barushka & Hajek, 2020) Hyves, Twitter dataset

(Feng et al., 2020) (uciBreast-tissue, glass016vs5, newthyroid1 and shut-
tlec2vsc4, bupa, cleveland)
(Chakraborty et al., 2021) self-made

(Jagdhuber, Lang, Rahnenführer, 2020) Ada, Author, Qsar, Spam, Tokyo,
Wdbc

(Raynal et al., 2023) self-made

(Javanmardi, 2011) PAN 2010 Wikipedia dataset

(Pocock, 2012) fbis, la12, ohscal, re0, re1

(López, 2014) VOPTICAL R dataset
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(Bolón-Canedo, 2014) UCI (Hepatitis, Liver, Madelon, Magic04, Mush-
rooms, Mushrooms, Pima, Spambase, Splice)

(Porto D, 2015) UCI (Hepatitis, Liver, Pima, Thyroid, Letter, Magic04,
Optdigits, Pendigits, Sat, Segmentation, Waveform, Yeast, Brain, CNS, Colon,
DLBCL, Leukemia)

(Tahir, 2016) WARD, Torch, VIPeR, iLIDS

(Saeedi, 2018) UCI (Heterogeneity HAR, REALDISP HAR, Opportunity,
Real World, Daily, and Sports Activities, 30-Movements-18-Activity)

(Y. Li et al., 2022) isolate, musk, Madelon, Inonosphere, Sonar, German,
Hill-with and Hill-without

(Momeni et al., 2021) self-made

(Teisseyre Pawe land Klonecki, 2021) mimic ii+ self-made

(Jagdhuber & Rahnenführer, 2021) spambase+self-made

(Sun et al., 2021) HyperPlane, SEA, LED, Rotating spiral, Spam, Sensor,
Electricity, Airlines

(Yan et al., 2021) Naval propulsion plants, Steel plate faults, Spam filter,
Concrete strength, Remote sensing, Landsat, Thyroid disease, Vehicle silhou-
ette, Bank Marketing, US censors income

(Cui et al., 2024) Australian, german, Thomas, hmeq, cashbus, lendingclub,
pakdd2010, paipaidai, gmsc

(BenPeña, 2021) wisconsin, votes, nursery, Australian, careval, leukemia,
leukemia

(Gresser et al., 2021) self-made

(Gan et al., 2022) Qsar, Madelon, Secom, Relathe, Pcmac, Basehock, Ger-
man, Isolet, Chess, Hillwith, Hillwithout and Pima

(Tao et al., 2021) Madelon, SECOM, chess, isolate, Hill-with, Hill-without,
musk, and sonar

(Mccombe et al., 2022) ADNI (Alzheimer’s Disease Neuroimaging Initiative)

(Bhuyan & Chakraborty, 2022) Anneal, audiology, breast cancer, diabetes,
glass, hepatitis, Ionosphere, iris, mushroom, sonar, vehicle, vowel

(Taylor et al., 2022) LED
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(Klonecki & Teisseyre, 2023) MIMIC (diabetes), MIMIC (hypertension),
MIMIC (liver), Heart dataset, Thyroid dataset, Alzheimer dataset, Artificial
dataset

(McCombe et al., 2022) ADNI (Alzheimer’s Disease Neuroimaging Initiative)

(M. Huang et al., 2022) RCC

(Suryani et al., 2022) Z-Alizadeh sani

(Namakin et al., 2022) Glass, Breast Cancer, Heart, Wine, German, Iono-
sphere, Sonar, Hill-valley, Musk1, Arrhythmia, LSTV, Isolet5

(Casella et al., 2022) self-made

(Raynal & Onnela, 2021) self-made

(Dharmalingam & Kumar, 2022) The data set comprises 2000 CT images.

(Valancius et al., 2023) CUBE-

(Knauer & Rodner, 2023) self-made

(Casella et al., 2023) self-made

(Yue et al., 2023) Bands, Hcvdat, Heart, Lung Cancer, Lymphography, Vot-
ing, Waveform

(Fajri et al., 2023) Z-Alizadeh Sani, Cleveland, and Statlog

(Casella, 2023) Honda Smart Home US

(Janisch et al., 2024) Synthetic, Threatcrowd, Hepatitis, Mutagenesis, In-
gredients, SAP, Stats

(C. M. Chen et al., 2024) Online lending, offline lending

(J.-R. Yu et al., n.d.) Heart disease, Heart failure, Housing, Ionosphere,
Parkinson’s, SPECT heart, Wisconsin, diagnostic

(Yang et al., n.d.) Seeds, Algerian Forest Fires, Heart Failure Clinical
Records, Pima, Raisin, Vowel, Sonar, Cardiotocography, Segment, Fetal Health
Classification, MEU-Mobile KSD, Wine Quality, Electrical Grid Stability Sim-
ulated Data, Magic, Default of Credit Card Clients, Shuttle, Census, Susy

(Ogawa et al., 2024) self-made

(Shi et al., n.d.) self-made
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(Seethalakshmi et al., 2024) self-made

(K. Huang et al., 2025) Overruling, AGNews, SciQ Hellasw,ag, Banking

(Mohanrasu et al., 2025) Arts, Education, Entertainment, Genbase, Gposi-
tivePseAAC, Health, Recreation, Reference, Social, Yeast

(Al-Ahmari & Nadeem, 2025) routine SSI surveillance data

(Z. Li et al., 2025) Sonar2,Sonar4,Sonar8,Sonar16, Iono2,Iono4, Iono8, Iono16,
ZOO, Wine2,Wine4, Wine8

(Ahajjam et al., 2025) FIRMS

The majority of cost-based FS methods are evaluated on generic benchmark
datasets, which may not reflect the challenges present in real domains such as
healthcare, IoT, or edge computing. In domains like medicine, cost is not just
numeric—it can represent delay, risk, or ethical constraints. Thus, methods
need to be designed or adapted with domain-specific cost semantics in mind.
Additionally, domain constraints may impose limitations on model complexity
or explainability, which are rarely considered in existing CBFS frameworks.
Future studies should focus more on real-world deployment.

Trend prediction is a critical aspect of understanding how research top-
ics might evolve, allowing researchers and industry professionals to anticipate
future directions. Topics and their associated qualifiers in machine learning
research are Kernel Learning, Generalized Linear Models, Learning Theory,
Nearest Neighbors and CBR, Regression Analysis, Regularization Methods,
Reinforcement Learning (Devers Cantero, 2024).

6. Conclusions AND FUTURE WORK

This survey presents a comprehensive taxonomy and comparative analysis of
cost-based feature selection (CBFS) methods. Beyond the descriptive aspect,
our critical examination revealed several novel insights:

• Despite their popularity, many existing CBFS methods fail to capture
real-world cost dynamics, often relying on synthetic or simplified as-
sumptions.
• Meta-heuristic and hybrid strategies outperform traditional heuristics

in multi-objective and high-dimensional scenarios, albeit at the expense
of higher computational complexity.
• There is a lack of domain-adaptive and interpretable CBFS techniques

that align well with application-specific cost constraints.

Contributions of this work include:

(1) A structured categorization of over 120 CBFS methods based on their
search strategies, evaluation techniques, and application domains.
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(2) A detailed analysis of each method’s advantages, limitations, and com-
putational trade-offs.

(3) Identification of underexplored directions such as online cost-aware
learning, deep neural cost modeling, and interpretable selection frame-
works.

Rather than merely describing prior work, this survey aims to offer critical
assessments and act as a foundation for future research and innovation in cost-
sensitive learning systems.

To further advance the field of cost-based feature selection, we outline key
open issues and potential directions:

• Online and Streaming CBFS: Design algorithms capable of real-
time, incremental feature selection under cost constraints.

• Deep Learning Integration: Explore cost-sensitive attention mech-
anisms and graph neural networks for automatic cost encoding.

• Interpretable CBFS: Develop transparent methods that balance cost
efficiency with human interpretability, crucial for healthcare and fi-
nance.

• Domain-Specific Modeling: Incorporate realistic cost factors (e.g.,
medical test prices, sensor energy) into the selection process.

• Benchmarking and Reproducibility: Establish standardized datasets
and metrics that reflect actual costs in real-world scenarios.

• Multi-objective Optimization: Advance CBFS methods that dy-
namically trade off between cost, accuracy, and complexity using evo-
lutionary strategies.
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